THE TEMPERATURE FIELD IN A HOLLOW CYLINDER
DUE TO A SOURCE MOVING ALONG A HELIX

Yu. A, Napar'in UDC 536,21

We solve the problem of the temperature distribution in a hollow cylinder due to a source
moving along a helix on the outer surface with boundary conditions of the second kind, The
solution can be used to calculate temperature fields on a computer for various forms of
processing materials,

A heat source of length 2h; and (angular) width 28 moves along a helix on the outer surface of an in-
finitely long hollow cylinder, starting at some time t = 0, The source intensity q(t) varies with the time in
some way. The initial cylinder temperature is everywhere T;. There is no heat transfer to the external
medium, The thermophysical parameters are assumed to be constant,

It is required to establish the temperature distribution for t> 0,

We shall solve the problem in cylindrical coordinates moving with the source., The origin is on the
cylinder axis and the initial plane from which the angle ¢ is measured passes through the middle of the
source,

Then the problem can be reduced to the solution of the following equation (in nondimensional variables):
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Equation (1) can be solved by the sequential application of Fourier and Hankel transforms [1-3].

Omitting the intermediate calculations, we can write the solution as
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The sum with respect to s is over all positive roots of the equation

Gn (s) = 0.
In particular cases:

1) when the angular velocity w = 0 (Q = 0) we obtain the solution for a source moving along the z-axis
over the surface of the cylinder;

2) when the linear velocity v = 0 (U = 0) we obtain the solution for a source rotating about the axis of
the cylinder;

3) when g = 7 we obtain the solution for an annular source in motion;
4) when @w = v =0 (Q = U = 0) we obtain solutions for fixed sources;

5) when 8 = 7 and h = «» we obtain the solution for a cylinder heated over the whole of its outer surface,
If K(Fo) = K = const in this case we obtain the solution given in [1] for boundary conditions of the
second kind,

NOTATION

§=T-Ty/T, is the nondimensional temperature;
T is the cylinder temperature;
Ty is the initial cylinder temperature;
p=r/Ry is the nondimensional radius;
R, Ry are internal and external radii of the cylindrical surfaces;
£=2/Ry is the nondimensional coordinate in the direction of the z-axis;
Fo=(a /R%)t is the Fourier number;
a is the coefficient of thermal diffusivity;
b is the thermal conductivity coefficient;
h =hy/R, is the nondimensional source length;
K(Fo) = (Ry/ATya(Fo) is the nondimensional intensity of the heat flow;
Inlsp, Ynisp is the Bessel function;
U = (v/a)R, is the nondimensional velocity along z-axis;
Q = (w/a)R} is the nondimensional angular velocity.
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